
1. Introduction and Discussion

Neutron β-decay provides the most precise measure-
ments of the relative axial-vector coupling constant λ.
The precise value of λ is very important in many
applications of the theory of weak interactions,
especially in astrophysics, e.g., a star’s neutrino
production is proportional to λ2. More precise measure-
ments of neutron β-decay parameters are also very
important in the search for new physics. Since neutron
decay rate is proportional to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element squared, |Vud|2, we
can obtain Vud ( the u and d quark mixing matrix) inde-
pendently of the nuclear model. Currently, the most
accurate value of the matrix element Vud is obtained
from the measurement of nuclear Fermi transitions in
0+ → 0 + nuclear β-decay. However, the procedure of
the extraction of this matrix element involves calcula-
tions of radiative corrections for Fermi transition in
nuclei. Despite the fact that these calculations have
been done with high precision (see [1] and references
therein), it is impossible to control the values of these
nuclear corrections from independent experiments. It is
expected that the planned measurements of the neutron

life time and angular coefficients will provide a value
for the hadronic vector weak interactions constant with
an accuracy comparable to or better than the value
determined from the 0+ → 0 + nuclear β-decay experi-
ments. The expected increase in the accuracy of exper-
imental data in neutron decay will elevate the status of
these experiments and rank them among the most
important experiments in fundamental physics. With a
more accurate value for Vud one could possibly resolve
the unitarity problem of the CKM-matrix. The unitarity
condition for the CKM matrix in the Standard Model,

(1)

gives a constraint on the three matrix elements. Two of
matrix elements, V us = 0.2196 ± 0.0023 and V ub =
0.0036 ± 0.0007 [2], have been extracted from high
energy physics experiments (see also [3, 4]). The cur-
rent value of V ud obtained from nuclear 0 + → 0 +

nuclear β-decay 0.9740 ± 0.0005 [1]. The V ud value
obtained from neutron β-decay is 0.9713 ± 0.0014 [5].  
When we use these values and uncertainties in Eq.(1),
there is at the level of 10–3 room for new physics (see
for example [5, 6, 7, 8, 11, 12] and references therein).
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It has been argued that the deviation from unitarity
could be related to uncertainties in determination of the
parameter V us (see, for example, [9, 10]). However, the
first element V ud gives the dominant contribution to the
unitarity equation and, therefore, it is crucial to obtain
a more precise value of V ud before we can draw conclu-
sions about the validity of the Standard Model.

To  extract V ud from the expected high precision neu-
tron decay data, one has to evaluate all corrections for
neutron decay with the appropriate accuracy. These
corrections are important at the level of a few percent,
they are of the same order of magnitude as the expect-
ed deviations from the Standard Model and they should
be carefully re-examined. The main concern is the
accuracy and reliability of calculations of the radiative
corrections, especially the ones which are dominated
by nucleon structure-dependent contributions.

It is well-known that in the tree approximation
(neglecting recoil corrections and electron/proton
polarization) the neutron decay rate [13] can be written
in terms of the angular correlations coefficients a, A, B
and D:

(2)
Here, σσ is the neutron spin; me is the electron mass, Ee,

Eν, pe, and pν are the energies and momenta of the
electron and neutrino, respectively; and GF is Fermi con-
stant of weak interaction (obtained from the µ-decay
rate). The function Φ (Ee) includes normalization con-
stants, phase-space factors, and standard Coulomb cor-
rections. In the tree approximation the angular coeffi-
cients depend only on one parameter, λ:

(3)

(The parameter b is equal to zero for the standard
vector—axial vector type of weak interactions, and the
parameter D is related to time-odd correlations of spin
and momenta, therefore in the first Born approxima-
tion, it is defined by a time reversal violating process.)

Since one can measure at least four parameters with
high precision: the total decay rate, a, A and B coeffi-
cients, one naively would expect that simultaneous
analysis of these data may lead to  an over-determined
system of algebraic equations with the possibility of
extracting the unknown parts of radiative corrections.
Unfortunately, this is impossible. It was shown [14, 15]
that neglecting terms of order α (Ee / M) ln (M / Ee) and
α (q / M) (where α = 1/137, is an electromagnetic
coupling constant, M the nucleon mass and q the trans-
ferred momentum), Eq.(3) is invariant under transfor-
mation

(4)

where aV and aA are hadronic structure dependent parts
of the radiative corrections for Fermi and Gamow-
Teller transitions, respectively. This means that in the
given  approximation one cannot obtain experimental
restriction on the strong interaction dependent parts of
the radiative corrections. Moreover, this transformation
makes it impossible to obtain the non-renormalized
parameter λ from neutron decay experimental data. It is
therefore necessary to perform a careful calculation of
the hadronic model dependent parts of the radiative
corrections for both the vector and axial-vector
currents.

What options do we have to control the reliability of
calculations of radiative corrections to neutron β-decay
if we can neither obtain them from any set of neutron
decay experiments nor calculate them in a model inde-
pendent way using the standard approach? One possi-
bility is to parameterize radiative corrections in terms
of a fixed number of parameters which could be
obtained from independent experiments. The effective
field theory (EFT) approach, which has proven to be
very successful in describing low-energy processes, is
the method of choice. Based on the expansion para-
meters of EFT, this theory has the advantage of a sys-
tematic improvement in the accuracy of the calcula-
tions. Using EFT the first result of an evaluation of the
radiative corrections for neutron decay has been
obtained [16]. In the EFT approach the unknown high
energy behavior is integrated out and replaced by the
set of low energy coupling constants (LEC) in the
effective Lagrangian. The differential neutron decay
rate in the next to leading order approximation includ-
ing recoil effects can be written as (see for details [16]):
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(5)

where the energy dependent angular correlation coeffi-
cients are:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Here is the finite renormalized low energy con-
stant (LEC) corresponding to the “inner” radiative cor-
rections due to the strong interactions in the standard
QCD approach;
tion usually absorbed in the standard Fermi function,

(13)

(14)

In Eq. (5) the custom of expanding the nucleon recoil
correction of the three-body phase space has been used.
These recoil corrections are included in the coefficients
Ci, i = 0, 1, …, 6 defined in the partial decay rate
expression, Eq. (5). It should be noted that the expres-
sion for C2 is an exclusive three-body phase space
recoil correction, whereas all other Ci, i = 0, 1, 3 …, 6
contain a mixture of regular recoil and phase space
(1/mN) corrections. The C4 and C6 corrections coeffi-
cients do not contain any Coulomb (radiative correc-
tion) terms due to the assumption that the α and the
Q/mN corrections are of the same order. It should be
noted that the above results reproduce the well-known
model independent parts of radiative corrections as
well as recoil corrections.

The EFT approach [16] demonstrates the principle
how one can systematically evaluate higher order cor-
rections (including radiative corrections) in terms of
LECs which can be determined from independent
experiments, e.g., muon capture on the proton. Then the
corrections will be under control and the new genera-
tion of neutron decay experiments, which are being 
considered at new Spallation Neutron Source, can
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provide unambiguous information about the validity of 
the Standard Model and can be used as a precise tool in
the search for new physics.
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